A Point of Reckoning : Part I

A Point of Reckoning:
Part I

by
Clifford E Carnicom
Aug 19 2017

C:\Users\Clifford\Documents\Carnicom Institute\A Point of Reckoning\Part I\hepa_rain_equivalency-02.jpg

A general equivalency between the organic nature of materials collected with the use of a HEPA (High Efficiency Particulate Arrestance) air filter and a series of concentrated rain samples has been established. This conclusion is based upon the use of infrared analysis, microscopic examination, and visual examination of the materials. The inherent similarity between the historically designated “environmental filament” and the filaments known to be clearly associated with the so-called “Morgellons” condition must also be accepted as a part of this analysis.

This work has been conducted over a period of roughly two years with careful repetitions and redundancies. Fundamentally, the conclusion is logical but nevertheless sweeping in impact; what is in the air is in the water. Furthermore, what is in the air and the water has an important relationship to marked changes in health that affect the general public. This state has developed in a global and ubiquitous sense for more than two decades, and we must now all share some responsibility to acknowledge and proclaim our condition on the planet.

The details of the methods will only be briefly summarized here; they involve long term sample collection and a variety of laboratory analyses over extended time. The photographs below will demonstrate the essence of comparison.

The similarity of the infrared plots reveals to us that the basic organic structure of the extracted materials from both the air filters and the rain samples are the same. The details of molecular structure inherent within the plot will be reserved for future discussion; the signature aspect of infrared spectroscopy is sufficient at this point to advance the argument.

In addition, the microscopic examination of both samples also reinforces that the biological samples contained within both samples are also identical. There is little doubt that this biological equivalency is also at the root of the infrared analysis of organics mentioned above.

Additional notes on some of the details of sample types and preparation follow at the end of this report.

C:\Users\Clifford\Documents\Carnicom Institute\A Point of Reckoning\Part I\HEPA-0006.jpg C:\Users\Clifford\Documents\Carnicom Institute\A Point of Reckoning\Part I\HEPA-0023.jpg

Representative “Environmental” Filaments collected on HEPA Air filter (blue to left, red to right).
Analysis of the filaments demonstrates properties that are common with filaments
that have been collected from the concentrated rain sample. These filaments are
also representative of those that are associated with the “Morgellons” condition.
The background mesh network (white filaments) is the HEPA air filter itself.
Magnification Approx 800x.

C:\Users\Clifford\Documents\Carnicom Institute\A Point of Reckoning\Part I\Rainfall Concentrate Analysis 1500x Aug 15 2017_4.jpg

Magnification Approx. 1500x

C:\Users\Clifford\Documents\Carnicom Institute\A Point of Reckoning\Part I\Rainfall Concentrate Analysis 5000x Aug 15 2017_2.jpg

Magnification Approx. 5000x.

Filaments collected from rainwater concentrate sample.
Analysis demonstrates properties that are common with filaments collected in the HEPA air filter.
The filaments also demonstrate these same properties that are
associated with the “Morgellons” condition.

C:\Users\Clifford\Documents\Carnicom Institute\A Point of Reckoning\Part I\hepa_ir_02.jpg

Infrared Plot of HEPA Air Filter Extract

C:\Users\Clifford\Documents\Carnicom Institute\A Point of Reckoning\Part I\rain_ir_02.jpg

Infrared Plot of Rainwater Concentrate Sample

Infrared plots to compare the organic nature of the
HEPA air filter extract against the organic nature of the rainfall concentrate.
The samples contain organic materials that are fundamentally of the same nature.

Additional notes:

HEPA Filter(s):

HEPA filters are air filters that are quite effective at trapping materials to the micron size level. They have an interesting history and origin, as they were developed as a part of the Manhattan Project in the 1940’s to trap radioactive materials. This filter type is now in common use and affordable. There is a fair amount of usage of HEPA filters in the history of Carnicom Institute (CI) research, as they are a very effective means of collecting air particulates.

They are also used in commercial aircraft. One of the ironies of the aerosol investigations over the last two decades is that a ready source of sample collection data has always existed; the difficulty is that of access to the samples. It has long been advocated that designing any single aircraft test for sampling the atmosphere is an inefficient, deficient, unnecessary and expensive approach to acquire information about the state of pollution in the atmosphere. This singular test approach has been advocated fruitlessly by several parties over the course of time. The situation is that a massive collection of particulate samples already exists for examination and analysis, but that access to it is not forthcoming. On a hearsay basis, there is information to indicate that the disposal of the filters is carefully controlled (potentially designated as radioactive?).

It is also of interest to mention that, at a very early point of the research, I was given anonymous access in confidence to such a filter from a commercial airliner, along with a laboratory test of the filter for certain metallic elements. That individual remains unknown but he remains deserving of thanks from all of us. To my knowledge, there is no similar test by a member of the public since that time, apparently due to the access issues mentioned above.

That particular filter did show unusual levels of barium in the test results (and calcium to my recollection), and it was one of the harbingers of testing for atmospheric metals that was to follow. At the time of receipt, no laboratory facilities of any kind were available to CI and the physics of the aerosol operations were unknown to the level acquired during subsequent research over the years. Credit is also overdue to AC Griffith, now deceased, for his early role in stimulating interest in the electromagnetic aspects of the aerosol issue. The interplay between ionizable materials and electromagnetic subsequently became a dominant theme of CI research, and the contributions of both of these individuals are to be recognized in that history.

In the case of the current research, two HEPA filters have been used with long term collection periods for each. Laboratory testing depends upon the sensitivity of the instruments employed and with that sensitivity comes cost. One of the methods of compensating for decreased sensitivity is to allow for an increased time of collection. This is our requirement here. As such, the first filter was allowed to run its course for approximately 6 months, and the second filter ran close to one full year. Both filters were running in an indoor environment on a second floor, approximately 20 feet above ground level. The history of work includes outdoor HEPA filters as well, but for the sake of practicality as well as attendance, we can also recognize that all indoor air ultimately comes from the outside. As a matter of fact, indoor air actually normally has higher levels of concentration of particulates than outdoor air does, so pollution monitoring must encompass this environment equally.

Some of the larger pollutants, e.g., the filament samples, appear quite readily within a matter of weeks under the microscope. The longer term goal in this project was to collect the micron size material that is invisible to the eye until sufficient mass has been collected. This is the source for chemical and spectroscopic testing in this case.

Sample preparation for instrument use is one of the greatest demands in the laboratory environment. It consumes far more effort and time than most people recognize, other than those involved in the field. In the case of infrared (IR) spectrometry, water is the bane of the testing process and is generally to be avoided in all respects. The HEPA particulates in this case have been dissolved into ethanol, which is a suitable solvent for the preliminary overview that is covered here. The evaporation of the solvent on a suitable substrate will allow the formation of a film which is well suited to infrared spectroscopy. The IR spectra acquired serves two primary purposes:

  1. It serves as a unique fingerprint of the compound(s) in solution
  2. It serves as a useful tool for introductory examination of the molecular structure of the compound(s) in solution

In the case of this paper, the emphasis is only upon the signature aspect of the spectra, as the purpose here is to compare to sampling from a different environment, namely, that of rainfall. This comparison is what is shown above and the point of equality or high similarity is made in the process.

Rainfall Sample:

Rainfall presents even greater difficulties in the sample prep arena. The sensitivity issue discussed above is front and center, and the solution to the problem in this case is to acquire a greater volume of rainfall. Adequate sample volume is definitely an issue, and fortuitous periods of rain will be required. Non-detrimental evaporation and condensing of the sample will require a fair amount of patience, but it can be accomplished. The samples of this paper were collected in 2016 and were condensed to roughly 5% of their original volume. Additional extensive studies were completed on these samples in the previous year, and they have been recorded in a series of papers on this site.

The act of water removal from a sample of rain is obviously an additional challenge. It too can be done with patience and careful monitoring. The method in that case is to carefully evaporate an already condensed sample down to the sub-milliliter level under modest heat, and then create a similar film at the final point for use in IR spectroscopy. In this case ATR (Attenuated Total Reflection) IR spectroscopy is well suited to the task, however, traditional KCl plates can also be used with sufficient attention to details.

Clifford E Carnicom
Aug 19 2017

Born Clifford Bruce Stewart
Jan 19 1953

Carpinteria Crystal

Carpinteria Crystal

by
Clifford E Carnicom
Sep 25 2016

An environmental crystal sample sent to Carnicom Institute from a concerned citizen has been analyzed as to its nature.  The ground sample was received three years ago and it has been held in custody since that time.  Circumstances are now more favorable toward establishing the identity or nature of inorganic compounds, and thus the opportunity to do so in this case has been exercised.  The sample originates from the Santa Barbara – Carpinteria region of the country.  The sample is well documented, clean, and has been collected and transported in a careful fashion.

One of the reasons for the interest in the sample is a repetition of events.  The citizen reports that similar appearing materials  have occurred within the same coastal housing district on multiple occasions over a period of many years.  In addition, the findings of this study may have relevance to a paper presented earlier on this site.  The interest in devoting time to sample analysis is directly related to the the frequency and pattern of appearance.

There are also several occasions of crystal samples collected or received over the years that have not received proper attention due to insufficient resources and means for investigation.  The majority of these cases, to my recollection, resulted from air filtration systems.  These deficiencies have likely delayed our understanding of various forms of pollution that likely surround us, and this will remain the case until full and sufficient resources are devoted to these types of problems.  It is the opinion of this researcher that the regulating environmental protections agencies have an obligation to this end and that it has not been well served.

This particular sample has the following appearance:

sb_crystal_2013-01

Environmental Crystal Sample Material Received in 2013

 

The purpose of this paper is not to debate the origin or delivery method of the sample; the information available is insufficient to fully detail those answers.  It can be stated in fairness that the observer witnessed heavy aerosol  operations over the region in the early hours of the day of collection of the sample.  The density and activity level of the operations was stated to be high.

The purpose of this paper IS to call attention to what may be a repeating type of material that has potentially important environmental consequences, particularly if they are found to exist in aerosol or particulate form within the general atmosphere.  The sample type is also fully consistent with many of the analyses and postulates that have developed within the research over the years.  The specifics of that discussion will follow within this paper.

The sample has been evaluated using multiple approaches.  These include, but are not limited to:

  1. Electrochemistry techniques, specifically differential normal pulse voltammetry.
  2. Solubility analyses
  3. Melting point determination
  4. Density estimates
  5. Microscopic crystal analysis
  6. Qualitative reagent tests
  7. Conductivity measurements
  8. Index of refraction measurements

The results of these analyses indicate that the dominant component of the material is that of potassium chloride, a metallic salt form.  There are indications that the sample does contain more than one component, but any further investigation will have to take place at a later time.   Every physical and chemical form has implications, applications and consequences, especially if they occur in a manner foreign or unexplained to the environment.  The material shown above is of no exception to those concerns.  It may be the case that the appearance of this material in an unexplained manner and location is of no consequence; prudence, however, would suggest that we are obligated to seek out that which has no accountable explanation.  This premise is at the very heart of any forensic investigation, and environmental science and pollution control are also subject to that very same demand.

 


 

A brief bit of historical perspective on this topic could be helpful.  A search on this site on the subject of crystals will bring up a minimum of eight additional papers that are relevant; there are likely to be more.  These papers range in date from 2001 to the current date, so from this standpoint alone there is a repeating issue involved here.

A search on this site for historical presentation on potassium issues produces at least three papers on the subject.  There is reason to consider, therefore, that potassium (and related) chemical compounds may be worthy of examination with respect to geoengineering as well as biological issues.

Within this combined set of close to a dozen or more papers on the subjects, two will be mentioned further at this time.

The first will be that of another sample, also of a crystalline nature, received in 2003 from the same specific region of the country.  The title of that short report is “Additional Crystal Under Examination” (Jun 2003).  There are three points of interest in comparison between that and the current report:

1. Two generally similar and unaccountable sample forms appear in similar locations over a 10 year period, and a public interest in identification of the nature of the material remains over this same prolonged period.

2. The report in 2003 is reasonably brief with a limited microscopic examination offered.  The topic is mentioned more in the sense of an anomaly and a curiosity as there is no basis at the time for an in depth study of the materials; in addition, resources to do so at the time are non-existent.

3. The third will be the comment regarding the lack of water solubility of the first sample.  The importance of this observation will be the fact that the samples, although visually similar, have important differing chemical properties.  The conclusion is that multiple material types are expected to be subject to investigation over the course of time.

The second will be that of a laboratory report received in the year of  2005.  The title of that paper is “Calcium and Potassium” (Mar. 2005).  The importance and relevance of this paper can be understood from the opening paragraph:

A laboratory analysis of a rainwater sample from a rural location in the midwestern U.S. has been received.  This lab report reveals extremely high levels of potassium and calcium within the sample. Comparative studies have been done and they show that the calcium concentration is a minimum of 5 times greater, and that the potassium level is a minimum of 15 times greater than that which has been reported1 in the polluted skies of Los Angeles, California.

It will also be noticed that several health and environmental concerns with respect to aerosolized potassium salts are enumerated in that latter paper.  Attention should also be paid to the intriguing discussion of electromagnetic effects and impacts that must be considered with the chemistry of potassium and related ions.

Potassium chloride has common uses as well, such as a fertilizer or as a water treatment compound; there is, however, no cause given to think that it is being used in such fashions at this location and setting at this time.

 


 

Let us now bring ourselves back to the current moment.  The relevance and direction of those papers have borne themselves out over time, and the urgency of responsibility upon us is as imposing as ever.  We do not have the luxury of another 20 years to conclude on such an obvious state of affairs.

There are at least three immediate applications or consequences of the existence of aerosolized potassium chloride upon the atmosphere that should be mentioned.

1. Heat Impacts

2. Moisture Impacts

3. Electromagnetic Impacts

With respect to heat impact, potassium chloride is highly soluble within water.  When it does dissolve, it absorbs heat from the water, and the magnitude is significant.  Potassium chloride has actually been used as a cold pack commercially for this same reason; it is also readily available and relatively inexpensive.  It therefore can potentially be used to influence atmospheric thermodynamics, and this is one of many leads of investigation to pursue.

On the flip side of the equation, potassium chloride in a solid state has a rather low specific heat, especially relative to that of both air and water.  This means that, depending upon the state of the surrounding atmosphere, that it can also possess the capability to heat the atmosphere, rather than to cool it.

Furthermore, potassium as a metal in its elemental form also has a lower specific heat than air and once again this may allow for a net heating impact upon the atmosphere, depending on states of being, location and interaction with other elements or compounds.

The point of this discussion is that metallic salts of any kind DO have an impact upon the heating dynamics of the atmosphere, and that this process can be both complicated and variable.  You cannot place anything into the atmosphere without having an effect in some fashion, and it is a mistake to oversimplify and overgeneralize as to what those changes will be.  The location of placement of aerosols is another matter also, as has been discussed extensively on this site.

We are, therefore, not permitted to remain ignorant of the impacts that foreign and contaminating materials have upon the environment; heat dynamics are only one of many aspects of that we are forced to confront when the atmosphere is altered in ANY significant fashion.

There are, of course, many other environmental consequences from the addition of ionizable metallic salts into the environment.  These include plant life and agriculture, for example.  Readers may also wish to become familiar with a discussion regarding soil impacts as presented within the paper “The Salts of Our Soils” (May 2005).

As far as moisture is concerned, heat and moisture are obviously very closely related subjects.  One of the trademarks of the salt genre is that of absorbing moisture.  Some salts attract moisture so strongly that they are hygroscopic, meaning that they can draw moisture from the ambient atmosphere.  The observation of this phenomenon is quite remarkable; one can start with a solid and watch it change to an eventual liquid form.  Calcium chloride and strontium chloride are both good examples of this class of materials.

Locking moisture up in this fashion will most certainly increase the heat in the atmosphere; water is one of the greatest cooling compounds that exists on the planet.  It is impossible to separate heat and moisture impacts when dealing with aerosolized metallic salts; it is certain that there will be an impact upon the atmosphere,  environment and health.  It is difficult to predict a favorable outcome here.

Lastly, there may still be some that will ridicule the notion of electromagnetic impacts of ionized metallic salts upon the atmosphere and the environment.  I think such an approach might ultimately be foolhardy.  This tenet was brought forth early in the research of this organization, and the premise remains as strong as when it is originated.  For those that care to repeat the enterprise, there are measurements to support the hypothesis, and they only continue to accumulate.

For those that seek conventional sources, one need look no further than a document that traces back to the 1990’s, entitled “Modeling of Positively Charged Aerosols in the Polar Summer Mesopause Region” (Rapp, Earth Planets Space 1999).  A very specific reference of the ability of potassium in combination with ultraviolet light to increase the electron density of the atmosphere will be found there.  There are other elements that share in this remarkable physical property, and they have been discussed within this site for many years now.  Reading the patents by Bernard Eastlund may also be insightful.  The ability of moisture to ionize many metallic salts is also to be included within the examinations that are required to take place.

It is difficult to ignore and discount the fundamental heat, moisture, and electromagnetic impacts upon the planet when metallic salts are artificially introduced into the atmosphere.  It would not be wise to do so.  The case for investigation, accountability and redress is now strong, and each of us can make the choice as to how to best proceed.  It seems to be a simple matter to want to protect and ensure the welfare of our gifted home, as our existence depends upon it.  Clarity and unity of purpose would seem to be an end goal here; I hope that each of us will seek it.

Regardless of the origin of this particular sample (which is unlikely to ever be known exactly), this report points to the requirement of identifying repetitive and unknown contaminants in the environment.  The responsibility for this process does not fall either primarily or exclusively upon the citizens; this population has neither the resources or means to perform or satisfy the requirements of identification, evaluation and assessment.  Entrusted agencies that exist specifically for protection of the welfare of the common environment (e.g., air, water, soil) and that are funded by these same citizens ARE required to do so.  In this vein, I will once again repeat the closing statement from above:

Clarity and unity of purpose would seem to be an end goal here; I hope that each of us will seek it.

 

Clifford E Carnicom

Sep 25 2016


 

Supplemental Discussion:

Approximately a dozen methods of investigation have been used to reach the conclusions of this report.  These will now be described to a modest level of detail to assist in portraying the complexities of analyzing unknown environmental samples.  This description will further the argument that the citizenry is not realistically expected to assume this burden and cost; contamination and pollution are at the heart of existence for publicly funded environmental protection agencies and entities.  It is recommended that the public seek the level of accountability that is required to reduce and eliminate persistent and harmful pollution and the contamination of our common environment.

1. Voltammetry:

The methods of differential pulse voltammetry have been applied to the sample.  The methods are quite useful in the detection of inorganics, especially metals and trace metal concentrations.  The results of the analysis are shown below:

carpinteria-crystal-sep-04-2016-03

Differential Normal Pulse Voltammetry Analysis of Crystal Sample

The analysis indicates a minimum of two chemical species to consider.  The first of these is a suspected Group I or Group II element (-2.87V).  The most probable candidates to consider will be that of calcium, strontium, barium and potassium.  The other will be the consideration of  the chloride ion ( +0.63V and +1.23V).

At this point of the investigation, our strongest prospect will therefore be an ionic metallic salt crystalline form, most likely involving a subset of Group I or II of the periodic table.  The most likely candidate will, furthermore, be a chloride form of the salt.

2. We can then proceed to solubility tests.  Four candidates from above will now be considered, along with two additional candidates resulting from the chloride prospects:

calcium chloride
strontium chloride
barium chloride
potassium chloride

lithium chloride
cesium chloride

With respect to the first set of four, the solubility tests applied (i.e., water, methanol, acetone, sodium bicarbonate, acid, base) eliminate all but potassium chloride for further examination.

This reduces the primary set of consideration to that of:

potassium chloride
lithium chloride
cesium chloride

We now attempt to confirm the existence of the chloride ion in a redundant fashion.  A qualitative chemical test (HCl, AgNO3) is then applied to the sample in aqueous solution.  The existence of the chloride ion is confirmed.  The set of three candidates remains in place.

The next method applied to the sample is the determination of the melting point of the presumed ionic crystal form.  Ionic metallic salts have generally high melting points and this does present some difficulties with the use of conventional equipment and means.

The methods of calorimetry were adapted to solve this particular problem.  The methods were also applied to a control sample of potassium chloride, as well as two additional control compounds.  The results of the control and calibration trials produced results within the range of expected error (~ < 5%).

The melting point of the crystal form was determined experimentally by the above methods as approximately 780 deg. C.  The melting point of potassium chloride is 770 deg. C.  This result is well within the range of expected experimental error (1.4%).  During the process, it was noticed that an additional minority compound does exist within the sample, as a small portion of the sample does melt at a much lower point (est. 300-400 deg. C.) The minority compound would require separation and identification in a further analysis.

The melting points of lithium chloride and cesium chloride are 605 deg. C. and 645 deg. C., respectively, and they are thus eliminated from further consideration.

These results narrow the list of candidates specifically to that of potassium chloride.

An additional controlled test of conductivity of the salt in solution was applied.   The result of that test indicates agreement in conductivity with a known concentration solution of potassium chloride.  The error in that case was also well within the expected range of experimental error (0.6%).

In addition, further tests involving density determination, index of refraction, visual and microscopic crystal analysis further substantiate the identification of the crystal as being primarily that of potassium chloride.

The Demise of Rainwater

The Demise of Rainwater

by
Clifford E Carnicom

A Paper to be Developed During
the Summer of 2016
(Last Edit Jun 20 2016)

The single most important chemical species in clouds and precipitation is the .. pH value.

Paul Crutzen, Nobel Prize Winner in Chemistry, 1995

Atmosphere, Climate and Change, Thomas Graedel & Paul J. Crutzen

Scientific American Library, 1997

rain_idaho_04

Photo : Carnicom Institute

An analysis of five rainfall samples collected over a period of six months and spanning three states in the western United States has been completed.  There are five conclusions that are forthcoming:

1. The rainfall samples studied portray a smorgasbord of contamination. The contaminants appear to be both complex and numerous in nature.

2. There does not appear to be effective or comprehensive monitoring or regulation of the state of air quality, and consequently, rainfall quality in the United States at this time.

3. The results of the current analysis, utilizing more capable equipment and methods, are highly consistent with those that originated from this researcher close to two decades ago.

4. All reasonable requests or demands by the citizenry for the investigation and addressing of this state of affairs over this same time period have been refused or denied.

5. The level of contamination that exists poses both a risk and a threat to health, agriculture, biology, and the welfare of the planet.

 

Let us now proceed with some of the details.

We can begin with the pH, i.e., the acid or alkaline nature of rainfall.  Biochemical reactions take place (or, for that matter, do not take place..) at a specific temperature and pH.  If the system or environment for that reaction is disturbed with respect to the acidity and temperature, then the reaction itself is interfered with.  If the conditions depart far enough from what is required, the reaction may simply not even take place at all.  Such is the risk of interference to the acid-base nature of rainfall, upon which all life on this planet depends.

 

To be continued.

 

PART I: SUMMARY VIEW

summary_graph

summary_lab

UV Detector & Lab Equipment Used for Summary View Data

PART II: TRACE METAL ANALYSIS

Rainfall Analysis_16

Electrochemical Signature of Rainwater Tests for Trace Metals
as Determined by Differential Normal Pulse Voltammetry

The following metallic elements have been determined to exist, or to be strong candidates to exist, within a series of five rainwater samples that have been tested for trace metals.  The samples span three states across the country and six months of time.  The method applied is that of Differential Normal Pulse Voltammetry.  The level of detection for the method is on the order of parts per million (PPM).  This list considerably extends the scope of consideration for the future investigation and detection of metallic elements within rainwater.  The findings in the upper portion of the table are highly consistent with those under reporting by various laboratories across the country; those in the lower half serve to prompt further investigations into additional elements that are highly related in their properties within the periodic table.  An examination of the physical properties of these elements, in detail, will likely provide additional insight into the applications of use for these same elements.  It can be noticed that the majority of elements within the list act as reducing agents.
 

Element Measured Mean Redox Voltage
(Absolute Value)
Actual Redox Voltage
(Absolute Value)
Titanium (Ti) 1.63, 1.32, 1.24 1.63, 1.31, 1.23
Aluminum (Al) 1.67 1.66
Barium (Ba) 2.90 2.90
Strontium (Sr) 2.90 2.89
Magnesium (Mg) 2.66, 2.35 2.68, 2.37
Gallium (Ga) .52, .65 .56, .65
Scandium (Sc) 2.56, 2.09 2.60, 2.08
Zirconium (Zr) 1.45 1.43
Standard Error of Measurement 0.013 V; n = 15
(No information regarding concentration or concentration ranking is provided here)

 

Additional Inorganic Analyses:
qualitative_tests

Qualitative (Color Reagents) Test Results for Combined Rainfall Sample
A Value of 1 Indicates a Positive Test Result
Concentration of RainwaterSample ~15x
(No information regarding concentration or concentration ranking is provided here.)
(Chromium, Cyanide & Iron appear to be at minimal trace levels)

phosphatenitrate
nh3silica

Qualitative Positive Test Examples:
Phosphates, Nitrates, Ammonia, Silica

 

PART III: BOILING POINT TEMPERATURE ANALYSIS:

bp_01

Tests to Determine the Boiling Point
for the Concentrate Rainfall Sample Using an Oil Bath
(Contamination is Evident)

 

PART IV: INFRARED ANALYSIS:
(ORGANIC)

 

organics_separation_03

An Organic Extraction Process

(Results subsequently to be examined by Infrared Spectroscopy)

organics_separation_05

Infrared Spectrum of Rainfall Organic Extraction :

Water Soluble & Insoluble Components

(see previous photo)

(solvent influences removed)

gc_01

Gas Chromatography (TCD) Applied to Organic Extracts

(tailing from varying polarities)

PART V: BIOLOGICALS

 

rain_biolgicals_01

Biologicals Extracted from Rainfall Concentrate Samples

~2000x

Additional Note:

I wish to thank Mr. John Whyte for his dedication and effort to organize and produce an environmental conference in Los Angeles, California during the summer of 2012. Mr. Whyte, in support of the speakers at the conference, provided the means for some of the environmental test equipment used in this report. I also wish to thank the general public for their assistance during this last year in the acquisition of important scientific instrumentation by Carnicom Institute. This report is made possible only by that generosity.

Clifford E Carnicom

Jun 18, 2016

To be continued.

Tertiary Rainwater Analysis : Questions of Toxicity

Tertiary Rainwater Analysis : Questions of Toxicity

 Clifford E Carnicom
Nov 08 2015

ABSTRACT

This paper presents evidence of a chemical signature that exists within an analyzed rain sample that is characteristic of known toxins and pesticides. The method of analysis used is that of mid-infrared spectroscopy. Specifically, certain functional groups involving sulfur, nitrogen, phosphorus, oxygen, and halogens have been identified in the analysis. It is recommended that the investigation be duplicated by independent researchers to determine if an environmental hazard does exist. If these results are verified to be positive, the source of the contaminants is to be identified and eliminated from the environment.

residual_ir4Infrared Spectrum of Concentrated Rain Water Sample
(Aqueous Influence Removed)

The original rainwater sample volume for this analysis is approximately 3.25 liters.  The sample was evaporated under mild heat to approximately 0.5% of the original volume, or about 15 milliliters.  The sample has previously been shown to contain both aluminum, biological components, and a residue that appears to be an insoluble metallic or organometallic complex.  The target of this particular study is that of soluble organics.

The organic infrared signal within the solution is weak and difficult to detect with the means available; it is further complicated by being present in aqueous solution.  The aqueous influence was minimized by making an evaporated film layer on a KCl cell; the transmission mode was used. The signal is identifiable and repeatable under numerous passes in comparison to the reference background.

The primary conclusion from the infrared analysis is that a core group of elements exists within the solution; these appear to include carbon, hydrogen, nitrogen, sulfur, phosphorus, oxygen and a halogen.  The organic footprint appears to be weak but detectable and dominated by the above heteratoms.

As further evidence for the basis of this report, qualitative tests for an amine (nitrogen and hydrogen), sulfates and phosphates (sulfur, oxygen and phosphorus) have each produced a positive test result.  A qualitative test for a halogen in the concentrated rainwater sample has also produced a positive result; the most likely candidate at this point is the chloride ion.  All elements present have therefore been proven to exist at detectable levels by two independent methods.

This grouping of elements is distinctive; they essentially comprise the core elements of many important, powerful and highly toxic pesticides.   For example, three sources directly state the importance of the group above as the very base of most pesticides:

 

“In pesticides, the most common elements are carbon, hydrogen, oxygen, nitrogen, phosphorus, sulfur and chlorine”.

Pesticide Residues in Food and Drinking Water : Human Exposure and Risks, Dennis Hamilton, 2004.

 

“We can further reduce the list by considering those used most frequently in pesticides: carbon, hydrogen, oxygen, nitrogen, phosphorus, chlorine, and sulfur”.

Fundamentals of Pesticides, A Self-Instruction Guide, George Ware , 1982.

 

“Heteratoms like fluorine, chlorine, bromine, nitrogen, sulfur and phosphorus, which are important elements in pesticide residue analysis, are of major interest”.

Analysis of Pesticides in Ground and Surface Water II : Latest Developments, Edited by H.J. Stan, 1995.

 

It is also true that phosphate diesters are at the core of DNA structure and that many genetic engineering procedures involve the splitting of the phosphate diester complex.

The information provided above is sufficient to justify and invoke further investigation into the matter.  The sample size, although it was derived from an extensive storm over several days in the northwest U.S., is nevertheless limited and quite finite after reduction of the sample volume.  The residual insoluble components (apparently metallic in nature) are also limited in amount and more materials will be required for further analysis.  The signal is weak and difficult to isolate from the background reference; concentration level estimates for elements or compounds (other than that of aluminum which has been assessed earlier) is another entire endeavor.  Systematic, wide-area, and long term testing will be required to validate or refute the results.  All caveats above aside, it would seem that the duty to address even the prospect of the existence of such toxins in the general rainfall befalls each of us.  It would seem wise that this process begins without delay.

There are a few additional comments on this finding that need be mentioned.

The first of these is the issue of local and regional vs. a national and international scope of consideration.  It is understood that pesticides or compounds similar in nature are a fact of our environment, and that considerable awareness and effort is in place to mitigate their damage over decades of use.  Organic farming and genetically engineered crops are two very divergent approaches to reconciliation with the impact of environmental harm, and they are shaping our society and food supply in the most important ways manageable.  Given that the pesticide industry exists, regardless of our varying opinions of merit or harm, I think that it is fair to say that we generally presume that pesticides are under some form of local control.  Our general understanding is that pesticides are applied at ground or close to ground level and are intended to be applied to a specific location or, at most, a region within a defined time interval.

The prospect, even I daresay, the hint, of pesticide or pesticide-like compounds in rainfall is more than daunting.  It seems immediately necessary to consider what scale of operation would support such toxins finding their way into the expanses of atmosphere and rainfall?  For the sake of the general welfare, I think we should all actively wish and seek to disprove the findings within this report.  I will not hesitate to amend this report if honest, fair and accurate testing bears out negative reports over an adequate time period, and my motive never includes sensationalizing an issue.  This is one test, one time, one place, with limited means and support in the process.  I cannot disprove the results at this time and I have an obligation to report on that which seems to be case, uncomfortable as it might be.  It is not the first time that I have been in this situation, and judging from the changes in the the health of the planet that have taken place, it is unlikely to be the last.  The sooner that the state of truth is reached, the better we shall all be for it in any sense that is real.

The second comment relates to the decline of the bee population.  Bees are an indicator species, the canary in the mine, as it were.  The bees and the amphibians have both been ringing their alarm for some time now, and we best not remain passive about finding the reasons for decline.  A minimum of 1/3 of our agricultural economy, and that means food, is dependent upon the bee population for its very existence.  This is no trifling matter, and we all need to get up to speed quickly on the importance of this issue, myself included.

Suffice it to say that compounds of this nature, i.e, historical pesticides like organophosphates and the purported safer and more recent alternatives (e.g., the neonicotinoids), have a very close relationship to the ongoing and often ambiguous studies regarding bee Colony Collapse Disorder (CCD).  From my perspective, it would seem prudent to eliminate the findings of this report as a contributing cause to the problem as promptly as possible.  If that can not be done so readily, then we may have a bigger problem on our hands than is imagined.

One of the interesting side notes is that the elements and groups identified as candidates for investigation actually seem to overlap between the neonicotinioids and the organophosphates.  This includes the nitrogen groups that characterize the neonicotinoids and the phosphate esters that characterize the organophosphates.  If such a combination were at hand, this would seem especially troublesome as both forms remain mired in controversy, let alone any combination thereof.

The third and final comment relates to the toxicity of these compound types in general.  It is not just an issue about bees or salamanders.  These particular compounds have a history and effects that are not difficult for us to research, and we should become aware of their impacts upon the planet quickly enough.  Many of us already are.  The fact is that organophosphates have their origins as nerve gas agents in the pre-World War II era, and in theory their use has been reduced but hardly eliminated.  Residential use is apparently no longer permissible in the United States, but commercial usage still is.  This raises questions on what real effect any such “restrictive” legislation has had.

The neonicotinoids are promoted as a generally safer alternative to the organophosphates, but they are hardly without controversy as well.  They too have strong associations with CCD in the research that is ongoing.  They also are neuro-active insecticides.

It would seem to me that we all have a job to do in getting up to speed on the source, distribution and levels of exposures to insecticide and insecticide related compounds.  A greater awareness of toxins in our environment, in general, also seems in order.  If our general environment has been affected to a degree that has avoided confrontation  thus far, then we need to face the music as quickly as possible.  I trust that we understand the benefits of both rationality and aggressiveness when serious issues face us, and this may be another such time.  I hope that I will be able to dismiss this report in due time; at this time, I cannot.

Sincerely,

Clifford E Carnicom
Nov 05, 2015

Born Clifford Bruce Stewart
Jan 19, 1953

 

Additional Notes:

The preliminary functional group assignments being made to the absorption peaks at this time are as follows (cm-1):

~ 3322 : Amine, Alkynes (R2NH considered)
~ 2921 : CH2 (methylene)
~ 2854 : CH2 (methylene)
~1739 : Ester (RCOOR, 6 ring considered)
~1447 : Sulfate (S=O considered)
~1149 : Phosphate (Phosphate ester, organophosphate considered)
~1072 : Phosphine, amine, ester, thiocarbonyl
~677  : Alkenes, aklynes, amine, alkyl halide

The assignments will be revised or refined as circumstances and sample collections permit, however, as a group they appear to provide a distinctive organic signature.  A structural model may be developed at a future date.

Some chemical compounds which may share some similar properties to that under consideration here include, for example, (not all elements included in any listed compound; only for reference comparison purposes):

p-chlorophenyl (3-phenoxypropyl)carbamate
N-(1-naphthylsulfonyl)-L-phenylalanyl chloride
2,2,2-trichloroethyl 2-(2-benzothiazolyl)dithio-alpha-isopropenyl-4-oxo-3-phenylacetamido-1-azetidineacetate
cytidine monophosphate
diiodobis(triphenylphosphine)nickel(II)

per :
SDBSWeb : http://sdbs.db.aist.go.jp (National Institute of Advanced Industrial Science and Technology, Nov 06 2015)

Secondary Rainwater Analysis : Organics & Inorganics

Secondary Rainwater Analysis :
Organics & Inorganics

Clifford E Carnicom
Nov 04 2015

ABSTRACT

A second rainwater sample has been evaluated. On this occasion, both organic and inorganic attributes of the sample have been examined.  Although the sample investigated is of much larger volume, the results demonstrate an essentially equivalent level of aluminum present to that defined within the earlier report, i.e., approximately 2 PPM.  This magnitude exceeds the US Environmental Protection Agency recommended standards for aluminum in drinking factor by roughly a factor of 10. 

In addition, various organic attributes of the sample are introduced within this report.

rainwater_still_web

 Concentrated Rain Sample under Study in this Report
Distilled Water Reference on Left, Concentrated Rainfall to Right

concentrate
Residual Solid Materials from the Rainwater Sample of this Study

The volume of the sample collected is approximately 6.5 liters over a three day heavy storm period, collected in clean containers that are were exposed to open sky.  The sample was concentrated by evaporation under modest heat to approximately 6% of the original volume.  It is apparent from visual inspection and by visible light spectrometry that the concentrated rainfall sample is not transparent and that it does contain materials to some degree.

Visible Light Spectrum Rainfall2

Visible light spectrum of the concentrated rainfall sample.  The increase in absorption in the lower ranges of visible light correspond to the yellow and yellow-green colors that are observed with the sample.
The pH of the concentrated sample is recorded at 8.5; this value is surprisingly alkaline and indicates the presence of substantial hydroxide ions in solution.  The pH of the solution prior to concentration measures at 7.5; this also must be registered as highly alkaline under the circumstances.

The pH of  ‘natural’ rain water has been discussed in earlier papers and its relationship to the expected value of 5.7 due to the presence of carbonic acid in the atmosphere (carbon dioxide and water).  The departure of natural rainwater from the theoretical neutrality of 7.0 is one aspect of the pH studies that I conducted in conjunction with numerous citizens across the nation some years ago, and these reports remain available.  The current finding is remarkably alkaline and, by itself, is indicative of fundamental acid-base change in the chemistry of the atmosphere.

From those early reports, it may be wise to recall the words of Paul Crutzen, Nobel Prize winner for Chemistry (Atmosphere, Climate and Change, 1995), who stated that the most important chemical attribute of precipitation is indeed the pH value.  It behooves us, as a species, to act rather quickly on any reasonable claim to a significant change in fundamental atmospheric chemistry that may exist.  It must be acknowledged that these same claims now prevail over decades of time, and that any dismissal as an aberration of no consequence is unjustifiably diminutive.

The sample has been examined again for the existence of trace metals using the method of differential cyclic chronopotentiometry, as described in the earlier report. The results are essentially identical to that of the earlier report, and once again the signature of a soluble form of aluminum is detected . The sample in this case, however, is of much larger volume, was collected over a longer duration, and was more highly concentrated that that in the preliminary report.

The concentration level was again determined, and the analysis indicates a level of soluble aluminum within the rainwater sample at 2.0 PPM.  This compares quite closely with the earlier sample result of approximately 2.4 PPM . This determination once again takes into account the concentration process that has been applied to the sample for testing sensitivity purposes.

Two facts bear repeating here:

First, this value exceeds the US Environmental Protection Agency (EPA) standards for drinking water by roughly a factor of 10, again using the most conservative approach possible that can be taken.

Second, the previously referenced U.S. Geological Survey statement from the year of 1967 is valuable both in relation to evaluating the EPA standards as well as assessing the expectations of aluminum concentrations in natural waters:

usgs_quote_1967-2

There is now a necessity to include an additional aspect of the rainfall analysis that has made its presence known more clearly.  This is the case of biologicals.  It is a fact, that in addition to the repeated detection of a trace metal at questionable levels, certain organic constituents are coming to the fore.   The test results are repeatable at this point and these organics will eventually require an equal accounting for their existence.  I will not enter into an extended discussion of their potential significance at this time, as the first and necessary step is to place on the table that which must be confronted.  My introductory suggestion at this point is to become aware of a previous paper on this site, entitled “A New Biology” to gain some familiarity with the scope of the issue . It is fair to say that along with changes of chemistry in this planet, we must also confront certain changes in biology that are in place.  The history of this planet, the cosmos, life and our own species is dynamic, and intelligence itself is partially expressed in the ability to adapt to changing circumstances.  We are in the process, whether we like it or not, of learning if and how quickly we can adapt to changes that have and are taking place, induced or otherwise.  We may also choose whether to participate in the process (hopefully for the betterment of the world, as opposed to its detriment), or if we shall remain ignorant in an effort to ensconce ourselves in a purported comfort zone.

The methods of examination to be presented here are twofold: that of microscopy and that of infrared spectroscopy.  Here are some some images that relate to the fact of the matter; they are repeated in both samples that have been examined:

rain1rain2
rain3rain4

Low Power (~200x) of Biological Filaments Contained in
Residual Materials from Concentrated Rainwater Samples
(The colors of the filaments are a unique characteristic (commonly red and blue) and they exist as an aid to identification with low power microscopy)

rain5rain6
rain7rain8

High Power (~5000x) of Biological Filaments Contained in
Residual Materials from Concentrated Rainwater Samples

These images will not be elaborated on in detail at this time, as it may require a period of time to examine the information that has come forth here.  They most certainly indicate a biological nature that shares a common origin with many of the research topics that have evolved on this site over the years.  It may be worthwhile to begin by becoming familiar with the ‘environmental filament’ issue that is so thoroughly examined on this site.  Since it seems clear that we are indeed dealing with an ‘environmental contaminant’ of sorts, the history of communication with the U.S. Environmental Protection Agency may also be worthy of review.

It would also seem to be the case that a significant portion of the residual material is inorganic as well, as in an insoluble metallic form.  It may be that the insoluble residual material may be composed in part as an organometallic complex, based upon historical findings.

Regardless of the source or impact of these materials, it does seem to fair to state that an accounting for their existence in the atmosphere and rainfall is deserved.  Each of us may wish to play a part in seeking the answers to such issues and questions before us all.  I wish for this to happen, as I suspect many of us know that it is the right thing to do.

 

Clifford E Carnicom
November 01, 2015.

Born Clifford Bruce Stewart
January 19, 1953.

Preliminary Rainwater Analysis : Aluminum Concentration

Preliminary Rainwater Analysis :
Aluminum Concentration


Clifford E Carnicom
Nov 02 2015

ABSTRACT

A method and means to identify the species and concentration of several different trace metals in ionic form has been established.  The method employed is that of differential cyclic chronopotentiometry, which is a subset of the science of voltammetry.  The brief paper presents a preliminary examination of a rainwater sample for the existence of trace metals.  The sample under examination shows the existence of aluminum in a soluble form.  An estimate of the concentration level of the aluminum has been made; this level exceeds that of the recommended standards for drinking water.  The results indicate that public concerns about the toxicity levels of certain trace metals in the general environment are warranted, and that a more thorough evaluation of the state of atmospheric quality by the responsible agencies is required.

rainwater_analysis
Rainwater Sample of this Study Collected under “Clean” Conditions
Note that Visible Pollution is also Evident

The determination of  trace metals can be an expensive and sophisticated proposition.  One of the more modern methods of detection at trace levels involves the use of Inductively Coupled Plasma (ICP); such means and skill sets are not practiced by the public under normal circumstances.  The determination of inorganic compounds at trace levels has always presented a serious challenge to this Institute, and in the past all such efforts have been relegated to that which can be gleaned primarily from qualitative testing methods.  One interesting alternative, with a long history and of increasing importance, is the science of voltammetry.  Many are familiar with the fact that elements and compounds have unique electromagnetic spectrums, such as those employed in the disciplines of spectroscopy including, for example, infrared spectrometry and atomic absorption.  It is valuable to know that many of these same elements also have an ‘electrochemical signature’, and that they behave in unique and identifiable ways when exposed to variations in voltage and current.  It is from this fact that voltammetry was born, and its origin dates back to the the days of Michael Faraday.  The basic principle of voltammetry is to examine the relationships of oxidation and reduction within a medium or a reaction; there are numerous variations upon the specifics of this theme.  Voltammetry equipment is dramatically more modest in cost than ICP and mass spectrometry, and yet it can still produce usable results that are, on many occasions, commensurate with the more advanced equipment and technology.  Such equipment, in is most basic form, is now employed at the Institute and it is yielding promising results in the important domain of inorganic analysis, such as metals and halogens.

The study here refers only to an inorganic analysis that has been made; at a later date a presentation on biological aspects of the rainwater sample will occur as time and circumstances permit.

The rain sample was collected on Oct 30 2015 with new and clean containers with a clear path to the sky above.  The sample was then evaporated to 33% of the original volume for the purpose of increasing the concentration level sufficient for testing purposes.  The sample was compared to a control volume of distilled water.

The potentiostat used in the voltammetry work is a CV-27 model from Bioanalytical Sciences. The unit has passed all test procedures as described in the manual. The output from the potentiostat is coupled to a Pico 2000 series digital oscilloscope, whereby both voltage input and output can be displayed as a function of time. The basic mode of operation for the testing process is therefore one of chronopotentiometry.

A series of calibration tests were made with a variety of trace metals, including calcium, magnesium, sodium, potassium, iron and aluminum.

The goals of the investigations include both the ability to identify the species as well as concentration; both goals have been achieved with the above elements in an ionic state in sufficient concentration, i.e., on the order of a few parts per million (PPM).  The work will extend to other species and combinations thereof in the future.

The particular variation of chronopotentiometry that has been utilized is that of cyclic chronopotentiometry, i.e, the alternating sweep between positive and negative voltages in the effort to identify the peak potential that characterizes the redox reaction of the particular element.

In addition, it has been found that the derivative of the chronopotentiogram is a key and critical factor in the determination of the species.  A careful analysis of the derivative of the cyclic chronopotentiogram can be used with favor to identify the peak potential of the element.

When this point is identified and collated with the identifying element, concentration levels can also be established if a set of known standards is available. Concentration determinations on the order of a few parts per million have been achieved on multiple occasions.

Further careful evaluation of the derivative of the cyclic chronopotentiogram in combination with variable voltage sweeps can be used to identify separate components within a mixture of ionic species; this has been accomplished with a combination of three elements in ionic form in aqueous media to date.

The current work, under these preliminary conditions and examinations, leads to an assessment of a concentration level estimate of aluminum (+3, ionic state) within the rain sample at approximately 2.5 PPM.  A conservative approach in all manners of examination has been adopted in the preparation of this estimate, and the condensing of the sample is accounted for.

The Environmental Protection Agency in 2012 lists the secondary regulations for aluminum in drinking water as being within the range of 0.05 to 0.2 mg/L.  This corresponds to a range of 0.05 to 0.2 PPM for this same standard.  It is an interesting observation within the same report that Secondary Drinking Water Regulations exist as non-enforceable federal guidelines. The wisdom of that classification process can be determined by the reader.

Continuing with the most conservative approach possible, one is led to the assessment that this particular rain sample from a rural location in northern Idaho exceeds the EPA drinking water standard and health advisory by roughly a factor of 12.

The following reference statement from the United States Geological Survey (Bulletin 1827-A, 1967) may be of interest in the evaluation of importance that is to take place:

usgs_quote_1967

It is a point of interest that many individuals have ascribed the detection of aluminum within the atmosphere over a period of many years to my name.  Such was never the case.  My earlier work did indeed establish the precept that ionizable metallic salts are at the core of atmospheric pollution that we now live under, but the testing of aluminum, specifically, was not a part of that process.  The chemistry of aluminum is quite different from that of the alkali earth metals, and the documentation of its existence by others has always raised intriguing questions of physics. Prior to this current work, most of the inorganic analyses that I have made have been restricted to qualitative tests.  No means of testing aluminum at the trace levels has existed for the Institute prior to this occasion.  Hopefully, this situation is now mildly improved with the current voltammetric studies.  This paper adds itself to a long list of documented actions by the citizenry on the consideration that aluminum is certainly, and has been, entitled to.

As a starting point, we might wish to consider the role that aluminum may play within a geoengineered environment, and it may be worthwhile to look at the exothermic energetics of nano-particulates of aluminum under exposure to moisture.  It raises some tantalizing prospects for additional capabilities of an induced or artificial plasma state.

It is also an observation that visible pollutants in rainwater may be most pronounced with the advent of a storm. This is logical, and this has certainly been observed in the cases of excessive fires in this region.  Time will tell if it is the circumstance of other samples.  It remains to be seen how the gradation of pollutants varies with respect to the duration of the rainfall.  Nevertheless, this study does exist as a valid data point and the merit of consideration is not weakened by any progression of dilution.  The concentration gradient with respect to storm length for invisible pollutants, such as those in ionic form, remains as a topic of equal interest for the future.

There is, of course, considerable debate on the issue of the sources of contamination within our water supplies on this planet.  I will not engage in that debate in this paper, as the purpose here is to simply provide another data point of reference that may be of service in helping to establish the accountability that is required.  There are arguments by some that wish to frame a state of ‘normalcy’ for us, regardless of the level of contamination that as a species we now infest ourselves with.  Regardless of various machinations that may be in vogue, we may all ask the questions of where standards evolve from, and whether or not we knowingly wish to deny the legacy of health knowledge that has been acquired over decades, if not centuries.  We should also be called upon to use our united common sense and intuition, pray coupled with the best scientific information available, to act as stewards for our future, and to be worthy of such a title.

Clifford E Carnicom
November 01, 2015.

Born Clifford Bruce Stewart
January 19, 1953.

Environmental Filament Project : An Introduction

Environmental Filament Project :

An Introduction

Clifford E Carnicom
Jul 09 2013
 

Under current projections, it wll be some months ahead before I will be able to engage fully into the Environmental Filament Project that has been outlined under this site. In the interim, however, an important introduction to what lies ahead can be presented.  Carnicom Institute is now able to display a series of scanning electron microphotographs of a typical sample; they will not be discussed in any detail until I am able to begin the study project.  Those familiar with my work may be aware of my reluctance to use the term nano-technology in association with any environmental or biological samples examined thus far; this has been due to the lack of any electron microscope images that are derived directly from these same samples.  This is no longer the case, and the use of the nano-technology term in association with this material is now fully justified.  The samples shown below are identical to those that the United States Environmental Protection Agency has refused to identify or analyze.    It has taken close to a decade and a half to acquire these images; appreciation is extended to all parties that have helped to make this information available to the public.  Sufficient additional samples have been received, both national and internationally, to support the Institute project plans.  This study will begin as the opportunity affords itself and as parallel work that is underway is completed.  Light microscope images of the same material are also shown below.

Carnicom Institute : Electron Microphotographs of Environmental Filament Sample

Carnicom Institute : Light Microscope (CMOS) Photographs of Environmental Filament Sample

cmos 1 cmos 2

cmos 3

Approximate magnification of original imagery : 6000x

Environmental Filament : False Report

Environmental Filament : False Report
Clifford E Carnicom
Jan 08 2013

It is now appropriate to disclose the circumstances involving a laboratory report on an airborne filament sample that was paid for in the year of 1999.  This report was issued jointly by three separate companies and they shall remain anonymous at this time.  It is now appropriate to present this information as the conclusions of the report are undeniably false.  Whether or not there was intent to misrepresent the facts of the case is not to be discussed in this paper; the purpose is to disclose information that is relevant to the public interest and welfare.  The laboratory was hired and paid significant monies to analyze and identify the very same airborne environmental filament sample that was sent to the United States Environmental Protection Agency (EPA) during this same time period of 1999-2000.  The failure of the EPA to identify that sample is adequately documented in this site.  This report will chronicle the events that surround this affair. 

The circumstances are generally as follows:

1. A laboratory in the southwestern United States was privately contracted in the fall of 1999 to identify an airborne environmental filament sample.  The nature of this environmental filament has been discussed and researched extensively on this site over the subsequent years.  A portion of this same sample was sent to the EPA for identification as noted above.  The reason for contracting with the private company was because of the failure of the EPA to identify the material.

2. The laboratory report was issued in December of 1999 with joint responsibility of findings between three separate companies.  The report claims to use the results of infra-red spectroscopic analysis and Polarized Light Microscope Analysis on the sample.

3. The final statement of analysis from the contracting laboratory is as follows (names of laboratories redacted).  The conclusions of this report will be discussed in more detail below.

4. At the same time that the laboratory was conducting their tests, I also was conducting my own tests on this same sample material.  The results of that testing process are extensively reported on within this web site.  Certain primary conclusions were being reached on my side about the nature of the material such as size, chemical reactivity, microscopy results, conditions of collection and the like.  Prior to the results being officially released, we were given the subjective information above relaying that the material “could be” a “spider’s web”.  It was quite clear to me from my own analysis that the testing results were inadequate and inaccurate, as it was already evident that the material was not a “spider web”.  The final report claiming to use spectral analysis was then issued, and it was clear to me at this point that a contest of conclusions was in order.  It was equally obvious through any reasoned analysis that the material was likewise not a wool fiber or any other obvious fabric or textile.  Readers familiar with “counter arguments” of the period will also know that a commonly circulated theme by a relatively small group of vocal advocates was that the material was simply a “spider’s web that had fallen from the sky.”… There were also questions that had emerged from the spectral reports themselves.

5. At this point, it was obvious that a rather serious and important conflict of conclusions had developed.  The first conflict arose from the failure of the EPA to identify the material on behalf of the public interest.  The second conflict resulted from paid professional services that provided obvious and conflicting information to my own independent analysis of the material.

6.  A personal visit and meeting with the president of the issuing company was then arranged.  The meeting had three participants: the president of the company, Dave Peterson (a colleague of mine) and myself.  The subject of the meeting was identified ahead of time to all parties as a discussion of the conclusions that had been issued by the laboratory.  It is also a fact that the letter presented below was written by myself prior to the actual meeting and it was held in reserve until the outcome of the meeting was decided.  It is fair to say that I had serious concerns and issues with the professionalism and honesty of the science that was on display by the laboratory.

7. Prior to the meeting, in addition to the letter written and held below, I had also prepared a list of nine line items that substantiated, from my own analyses, why the laboratory results issued were false.  At the opening of the meeting, I expressed my concern that I had some reservations and conflicts with the validity of the report and that I would like to discuss them with him.  It is also true that the atmosphere of the meeting was generally one of unspoken tension and alertness.

8.  I began with my first item of nine on the list.  This issue was simply the point  and question of direct observation, especially under the microscope.  I told the president of the company that the materials did not even look like spider webs under the scope.  In my own analyses, I made extensive study of numerous filament, textiles, hairs and filaments in general, including those of spider webs.  I actually had the serious issue as to whether or not the sample had been properly observed, as it is the starting point of the scientific method.  The president of the company did not contest or agree with or discuss my point of contention in any fashion, there was at most a tacit or implied acknowledgment of this first of nine points.

9. I then proceeded to the second item on my list of nine.  This issue had to do with the size of the filaments.  The size of the filaments is micron to sub-micron in nature, and it does not correspond in any physical or possible way to a hair or a spider web.  My own measurements of spider webs were in the order of seven microns and hair is on the order of 60-100 microns.  The conclusion on the laboratory report simply had no justifiable metric basis.  I again wondered privately whether or not the laboratory had made the effort to even measure as well as look at the filament in any detail.

10. The next event in the meeting was entirely unexpected.  At the end of the second of nine points to be raised, the president of the company immediately halted the discussion and my speech.  The words that were uttered by this individual were the following:

“This meeting is now adjourned.”

11. There was nothing more that was allowed to be said.  The meeting was over as I had reached item two on my list of nine.  At this point, I personally handed the letter that I had written apriori to the President of this company.   Thirteen years later, it is now time to make this correspondence available to the public.  The letter could not be presented until a certain confidence in laboratory results was achieved; this is now in place.

12. The letter written at the time of the meeting in the year 2000 is presented below for the record:

13.  There are additional details that can be discussed.  In the short form, let me assert to you that these airborne environmental filaments, that have been repeatedly observed, reported and collected over the last decade and a half, at a minimum,  are:

a) NOT naturally occurring.

b) NOT a spider’s web or silk.

c) NOT wool (or any other common textile fiber or hair).

14.  They are, however, at least in part, indeed a “proteinacous material”, but that is another story….

Sincerely,

Clifford E Carnicom

Jan 07 2013

______________________________________________

Additional Note from David Peterson provided on Jan 07 2013:

The reason my signature does not appear on this statement is that I trusted that we were dealing with a legitimate laboratory at the time this document was presented to them. There were inconsistencies in their findings that were sent to us via USPS prior to this that were the reason the face to face meeting needed to take place. I attended this meeting with Clifford Carnicom to address our concerns with their findings, so I was indeed a witness to how the meeting transpired and in retrospect I would have absolutely signed this document when it was presented to them.

David Peterson

(P.S. Dave, thank you, 13 years later…)

Environmental Filament : Keratin Encasement

Environmental Filament : Keratin Encasement
Clifford E Carnicom
Jan 07 2013

 

It can now be established with a high degree of certainty that the external casing of the environmental filament samples are composed of keratin or a keratin-like material.  This supposition has been in place for a number of years by this researcher; it can now be demonstrated to be the case by direct chemical and spectroscopic means.  Certain ramifications of this finding, in conjunction with earlier work, are as follows:

1.  It is deduced that the environmental filament is not a naturally occurring material. 

2. The filaments contains non-keratin based chemical and biological components within the internals of the filaments.   Considerable information regarding the nature of the environmental filaments is available on this site; this information has been accrued over a period of several years of progressive research.

3. The emphasis upon study of the filaments is to be directed to the sub-micron components (biological and chemical) that are internal to the filaments.  The keratin aspect of structure is to be interpreted as an encasing mechanism only.

4.  The filaments are not hair or spider webs. 

5.  A false laboratory report has been issued in the past regarding the identification of this filament material (to be discussed in a separate report). 

The primary method by which this conclusion has been reached is with chemical and spectroscopic comparison of a known source of keratin with the environmental filament by similiar means.  This comparison has been made possible with the recent advance in methods of chemical decomposition of keratin based substances by this researcher.  Please see the report entitled “Environmental Filament Penetrated” for this discussion and presentation. 

human hair serbian sample
Human Hair Environmental Filament Sample

Spectroscopic comparisons of keratin obtained from human hair and the same substance obtained from the environmental filament casing are shown immediately below; it will be seen that they are essentially identical.  Additional notes and discussion will follow below the spectra.

spectroscopic analysis of keratin

A visual light spectroscopic analysis of keratin obtained from the decomposition of human hair in combination with ninhydrin and heating.  Human hair is composed predominantly of keratin.

 

spectroscopic analysis of the environmental filament

 

A visual light spectroscopic analysis of the environmental filament after chemical decomposition and in combination with ninhydrin and heat.  It will be seen that the spectrum obtained is essentially identical to the keratin spectrum above. The keratin of the environmental filament is interpreted as an encasement structure and it does not account for the biological components that have been repeatedly identified within this protein housing.

 

colored solutions

 

A photograph of the colored solutions subjected to visual light spectroscopic analysis.  The solutions result from chemical decomposition of keratin based structures, in combination with heat and ninyhdrin.  The solution on the left is derived from the environmental filament sample; the solution on the right is derived from human hair.  Both hues and spectra can vary to some degree by concentration levels within a solution; these examples and spectra indicate a coincidence of relative concentration in each case.

 

 

Additional Notes:

 

Keratin is an especially impervious protein structure.  Observation and study of your own hair is a very good analogy for understanding the hardiness of this particular protein.  During the recent trials of study in decomposition, chemical penetration of hair itself represents an excellent example of the challenge of examination of the environmental filaments and their internals.  Numerous trials were conducted using strong solutions of sulfuric acid, sodium hydroxide, nitric acid, salicylic acid, sodium hypochlorite (bleach), ammonium thioglycolate and others.  All essentially met with failure to the degree needed with the time available.  Although some mild success was achieved with a hair sample, the environmental filament sample remained essentially impervious to almost all methods.  The best success of decomposition has eventually come forth with the use of a commercial hair declogger used in plumbing systems.  This solution is primarily a combination of concentrated sodium hydroxide and concentrated potassium hydroxide.  This solutions is highly caustic. The greater success of this method also becomes  dependent upon the use of applied heat over an extended time period. It was with the use of this method that valid comparisons, both chemically and spectroscopically, could be made.  Considerable work remains before us to acquire the detailed biochemical knowledge of the internal nature of the environmental filaments; this work will continue as the proper resources and equipment avail themselves.

 

Environmental Filament Penetration

Environmental Filament Penetration
Clifford E Carnicom
Jan 06 2013

An improved method of penetration of the environmental (airborne) filament sample has been achieved.  This accomplishment provides a pathway to an increased understanding of the structure and contents of the fibers.  Numerous studies have been reported on the nature of this filament material over the years on this site.  This material is the same type of material that was sent to the U.S. Environmental Protection Agency (EPA) over a decade ago.  The EPA refused to identify this material on the behalf of the public interest.

The original sample in this case came from Serbia; much appreciation is extended for the effort that made this sample available for study.  A photograph of this original sample is shown below:

serbian sample

Environmental Filament Sample that is the basis of this investigation.  Additional photographs related to this sample can be found on the following outline page:
Morgellons and Recent Findings.

filament breakdown

Photograph of the chemical method established to break down the outer shell of the filament and to access the contents of the filament. The method uses a combination of concentrated sodium hydroxide, concentrated potassium hydroxide and heat in a boiling water bath.  Note the separation of colors within the solution within the test tube, one yellowish and one a deep red color.  These colors represent different chemical and structural components of the filament.  Approximately 45 minutes are required at boiling temperature to complete the separation.

Considerable experimentation was required to achieve the method used in this report.  Many trials have been taken in the past using sodium hydroxide and heat alone.  The combination of the extreme caustic solutions applied to the filament along with a gentler heating process is a substantial improvement over previous methods.  Initial conclusions about the nature of the filament using this method will be discussed in a following report.  At this point it is of interest to note the following observations:

1. The original filament material is pure white, with no external or internal colors available.

2. The breakdown of the filament shows two colored effects, one a yellowish component and one a strong reddish component.  The strong colors internal to the filament, especially the brilliant reddish hue, are of more than casual interest.  Readers may wish to reexamine the numerous papers on this site involving blood and erythrocyte research as they relate to cultured (biological and environmental) filaments.

A great deal of information on the nature of these filaments is already available on this site; readers are encouraged to become familiar with this body of research that exists.  The advantage of the current finding is that it will allow more direct and ready access to the chemical composition of the filament samples.