Print Friendly, PDF & Email

Mar 15 2005

A laboratory analysis of a rainwater sample from a rural location in the midwestern U.S. has been received.  This lab report reveals extremely high levels of potassium and calcium within the sample. Comparative studies have been done and they show that the calcium concentration is a minimum of 5 times greater, and that the potassium level is a minimum of 15 times greater than that which has been reported1 in the polluted skies of Los Angeles, California.

It may be supposed that higher levels of such minerals in our atmosphere pose no immediate threat or concern; an examination of the physical processes likely to take place, however, shows exactly the opposite to be the case.  A search of the literature commonly reveals that an excess of positive ions in the atmosphere is detrimental to human health. 2,3,4,5

Examination of the aerosol issue has, almost from the beginning, focused on the important properties of the metallic elements of Groups I and II of the periodic table.  The attention has arisen because of the ease by which such elements are ionized.  This ionization will take place in the majority of cases quite readily with the energy available from ultra-violet light and, in some cases, from visible light alone.  It will be found6 that calcium and potassium, with a special emphasis upon potassium, are easily ionized with the energy available from either visible or ultra-violet sunlight.

A partial list of the effects of ion disturbances upon human health include, as a minimum, the following:

1. Impairment of the body’s ability to absorb oxygen, leading to headaches, asthma attacks, reduced circulation in the brain and emotional irritability.

2. The development of allergies.  Ionized air is associated with the following conditions : allergic bronchitis, allergic sinusitis, asthma, chronic obstructive pulmonary disease, and chronic respiratory tract allergies.  It may also be recalled7 that “chronic lower respiratory disease” now ranks as the third leading cause of death in this country, and that it continues to climb in this ranking.

3. High levels of serotonin in the bloodstream, triggered by excessive numbers of positive ions in the environment.

4. A reduction in the body’s ability to filter airborne contaminants from lung tissue.

Direct research from this site alone now documents unexpected levels of calcium, magnesium, potassium and barium.  A common thread between all of these elements is the ease of ionization that characterizes Group I and Group II elements of the periodic table.  Magnesium  oxide is also of value as a dispersal agent8 in aerosol operations. The existence of barium levels is of special concern because of the high toxicity of water soluble forms. Candidates for further and future testing,  include strontium, aluminum and titanium. The acquisition of an ion counter will be a valuable instrument to further this research; if anyone is in a position to provide or loan this device please feel free to contact me.

The importance of ionization with respect to the electromagnetic aspects of the aerosol operations has been extensively discussed and documented on this site.

The laboratory report received establishes an even deeper basis for further atmospheric and rainwater testing.  More importantly, the burden and obligation of governmental and public agencies to meet citizen demand for reestablishing the health of our atmosphere and planet remain as strong as ever.  The chronic failure of adequate response by these same public agencies requires that this accountability be accompanied by independent, non-vested verification.  It is hoped that the citizens will continue to exert this pressure for the public welfare.

1.  Hobbs, Peter, Introduction to Atmospheric Chemistry, Cambridge University Press, 2000, p137.
2. Ionized Air,
3. The Effects of Air Quality on the Serotonin Irritation Syndrome,
4. Air Ion Effects on Human Performance,
5. Static Voltage and Environmental Ion Depletion,
6. Carnicom, Ionization Apparent,
7. Carnicom, Leading Cause of Death,
8. Fuchs, N.A., The Mechanics of Aerosols, Dover, 1989, p.375