Morgellons : A Working Hypothesis (Introduction)

This paper seeks to identify a host of organic compounds that are likely to comprise the core physical structure of biologically produced filaments characteristic of the Morgellons condition.  A biological oral filament sample will be analyzed for the presence of candidate organic functional groups using the methods of infrared spectrophotometry.  Potential health impacts from these same core structures are examined and compared to the observed , reported and documented symptoms (in part) of this same condition.  Potential mitigating strategies, from a research perspective only, are discussed. A body of evidence, accumulated over a period of several years, reveals that the Morgellons condition is likely characterized by a host of serious physiological and metabolic imbalances.  These imbalances are caused by the  disruption of a variety of major body processes including, as a minimum, the regulation of metabolism by the thyroid, potential liver enlargement, a decrease of oxygen in the circulatory system, the utilization of amino acids important to the body, the oxidation of iron and a potential impact to neural pathways.  The impact of this degradation to human health can be concluded to be serious, debilitating and potentially lethal in the cumulative sense; the reports of those who suffer from the condition are in alignment with these conclusions.  This paper will summarize the body of work and chronology which leads to this more comprehensive hypothesis.
Advances in Microscopy Blood  & Skin Filament Examinations – A Slide Show

Advances in Microscopy Blood & Skin Filament Examinations – A Slide Show

A maximum magnification that combines optical and digital means has recently been achieved. The development allows, under suitable conditions and sampling, a magnification of images at a reasonable resolution up to a level of approximately 18,000 power. This method has been applied to the examination of human blood samples as they relate to the “Morgellon’s” condition. A brief introduction to the results of this recent advance in microscopy that uses relatively limited means and equipment is presented below. Relevant topics of research that arise from the study include the more detailed appearance of the bacterial-like structure that has been studied extensively by this research. The degradation of the red blood cell exterior membrane is also clearly apparent. The rather striking appearance of white blood cells, their behavior with respect to the bacterial-like component, and the internal structures that are visible within the white blood cells are of high interest. The importance of an active immune system against the bacterial-like encroachment is immediately obvious. Introductory live-blood video analysis recently performed further emphasizes the importance of the relationship of the immune system to the Morgellon’s condition. This level of awareness and visibility on the Morgellon’s condition is a direct result of these recent advances in microscopy methods and techniques. The availability of more advanced equipment, should it become available, will accelerate this discovery process.
Environmental Filament Project : An Introduction

Environmental Filament Project : An Introduction

Under current projections, it will be some months ahead before I will be able to engage fully into the Environmental Filament Project that has been outlined under this site. In the interim, however, an important introduction to what lies ahead can be presented.  Carnicom Institute is now able to display a series of scanning electron microphotographs of a typical sample; they will not be discussed in any detail until I am able to begin the study project.  Those familiar with my work may be aware of my reluctance to use the term nano-technology in association with any environmental or biological samples examined thus far; this has been due to the lack of any electron microscope images that are derived directly from these same samples.  This is no longer the case, and the use of the nano-technology term in association with this material is now fully justified.  The samples shown below are identical to those that the United States Environmental Protection Agency has refused to identify or analyze.    It has taken close to a decade and a half to acquire these images; appreciation is extended to all parties that have helped to make this information available to the public.  Sufficient additional samples have been received, both national and internationally, to support the Institute project plans.  This study will begin as the opportunity affords itself and as parallel work that is underway is completed.  Light microscope images of the same material are also shown below.
Then and Now

Then and Now

The following is a comparison between stock photography images that predate the year of 1999 and environmental photographs that have been published by the public on the internet after that same date. The reader can make his or her own determination, from both environmental and health perspectives, as to the source and impact of the significant changes that have taken place. Please show this page to your children so that they may understand what has been stolen from them.
Environmental Filament : False Report

Environmental Filament : False Report

It is now appropriate to disclose the circumstances involving a laboratory report on an airborne filament sample that was paid for in the year of 1999. This report was issued jointly by three separate companies and they shall remain anonymous at this time. It is now appropriate to present this information as the conclusions of the report are undeniably false. Whether or not there was intent to misrepresent the facts of the case is not to be discussed in this paper; the purpose is to disclose information that is relevant to the public interest and welfare. The laboratory was hired and paid significant monies to analyze and identify the very same airborne environmental filament sample that was sent to the United States Environmental Protection Agency (EPA) during this same time period of 1999-2000. The failure of the EPA to identify that sample is adequately documented in this site. This report will chronicle the events that surround this affair.
Environmental Filament : Keratin Encasement

Environmental Filament : Keratin Encasement

It can now be established with a high degree of certainty that the external casing of the environmental filament samples are composed of keratin or a keratin-like material. This supposition has been in place for a number of years by this researcher; it can now be demonstrated to be the case by direct chemical and spectroscopic means. Certain ramifications of this finding, in conjunction with earlier work, are as follows:
Environmental Filament Penetration

Environmental Filament Penetration

An improved method of penetration of the environmental (airborne) filament sample has been achieved. This accomplishment provides a pathway to an increased understanding of the structure and contents of the fibers. Numerous studies have been reported on the nature of this filament material over the years on this site. This material is the same type of material that was sent to the U.S. Environmental Protection Agency(EPA) over a decade ago. The EPA refused to identify this material on the behalf of the public interest.
Morgellons : Infrared Spectroscopy – Culture Confirmation

Morgellons : Infrared Spectroscopy – Culture Confirmation

An elderly, but wonderfully functional, Perkin Elmer 1320 infrared (IR) spectrophotometer has been acquired by the Carnicom Institute. This class of instrument has been sought after for many years by this researcher and organization. The value and purpose of an infrared spectrophotometer (along with other instruments as well) is that it can be used to gain insight into the molecular structure of organic compounds. This is a crucial need that has remained unfulfilled for many years in the biochemistry research that has taken place thus far. It is not an overstatement to realize that years of work can equivalently be accomplished with greater certainty and insight in relative moments of time with the proper instrumentation and resources. It is hoped that this equipment can be augmented or replaced with modern computer-based instrumentation at some point in the near future, however, the process of discovery at this important level can now begin.
Morgellons : The Breaking of Bonds and the Reduction of Iron

Morgellons : The Breaking of Bonds and the Reduction of Iron

Three methods that appear to interfere with the molecular bonding of the iron-dipeptide complex that is now understood to be characteristic of the "Morgellons" growth structure have been established and identified. The iron-protein complex is believed to be of, or similar to, the "Rieske Protein" (iron-sulfur) form. These three methods also appear to be variably successful in reducing the oxidation state of the encapsulated iron from the Fe(III) state to the Fe(II) state. The discovered methods involve the use of ascorbic acid (Vitamin C), N-acetyl cysteine (NAC) and glutathione. The results of applying glutathione appear to be especially promising at this time, as it appears that a major disruption in the bond structure has taken place after approximately 72 hours. The methods have been established and verified through visual, chemical and spectroscopic methods and each has an effect independent of the others. The hypothesis to be made here is that the growth of the organism itself may be interfered with as a result of this work.
Amino Acids Verified

Amino Acids Verified

The existence of certain amino acids, namely cysteine and histidine, as a dominant aspect of the "Morgellons" growth structure, appears to have been verified. This finding, along with that previously recorded on the important role that iron plays from a compositional standpoint, may be a highly important window into the structural framework of the Morgellons condition. It will also be found that deficiencies or disturbances of these particular amino acids correlate highly with symptoms that appear to frequently coexist with the condition, i.e., high oxidation levels and joint pains within the body.
Morgellons Research Project: Statement of Purpose

Morgellons Research Project: Statement of Purpose

The Carnicom Institute is embarking on a first of its kind study of the Morgellons condition often referred to as Morgellons Disease. The project will start with a questionnaire process, and this is in progress at this time. Subsequent developments of data collection and/or clinical studies may develop in the future depending upon support and resources.